skip to main content


Search for: All records

Creators/Authors contains: "Sarac, Mine"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Despite non-co-location, haptic stimulation at the wrist can potentially provide feedback regarding interactions at the fingertips without encumbering the user’s hand. Here we investigate how two types of skin deformation at the wrist (normal and shear) relate to the perception of the mechanical properties of virtual objects. We hypothesized that a congruent mapping (i.e. when the most relevant interaction forces during a virtual interaction spatially match the haptic feedback at the wrist) would result in better perception than other map- pings.We performed an experiment where haptic devices at the wrist rendered either normal or shear feedback during manipulation of virtual objects with varying stiffness, mass, or friction properties. Perception of mechanical properties was more accurate with congruent skin stimulation than noncongruent. In addition, discrimination performance and subjective reports were positively influenced by congruence. This study demonstrates that users can perceive mechanical properties via haptic feedback provided at the wrist with a consistent mapping between haptic feedback and interaction forces at the fingertips, regardless of congruence. 
    more » « less
  2. Relocation of haptic feedback from the fingertips to the wrist has been considered as a way to enable haptic interaction with mixed reality virtual environments while leaving the fingers free for other tasks. We present a pair of wrist-worn tactile haptic devices and a virtual environment to study how various mappings between fingers and tactors affect task performance. The haptic feedback rendered to the wrist reflects the interaction forces occurring between a virtual object and virtual avatars controlled by the index finger and thumb. We performed a user study comparing four different finger-to-tactor haptic feedback mappings and one no-feedback condition as a control. We evaluated users' ability to perform a simple pick-and-place task via the metrics of task completion time, path length of the fingers and virtual cube, and magnitudes of normal and shear forces at the fingertips. We found that multiple mappings were effective, and there was a greater impact when visual cues were limited. We discuss the limitations of our approach and describe next steps toward multi-degree-of-freedom haptic rendering for wrist-worn devices to improve task performance in virtual environments. 
    more » « less